

Friday, November 01, 2019

Attn: Ms. Jennifer Atkins AECOM 250 Apollo Drive Chelmsford, MA 01824

Project ID: GULF CHELSEA TERMINAL 60597375-0500

SDG ID: GCE25850

Sample ID#s: CE25850 - CE25853

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

Enclosed are revised Analysis Report pages. Please replace and discard the original pages. If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 UT Lab Registration #CT00007 VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

November 01, 2019

SDG I.D.: GCE25850

Version 3: Re-digested metals, re-run and reported by method 200.8

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

November 01, 2019

SDG I.D.: GCE25850

Project ID: GULF CHELSEA TERMINAL 60597375-0500

Client Id	Lab Id	Matrix
OUTFALL 003	CE25850	SW DISCHARGE
CHELSEA CREEK	CE25851	SW DISCHARGE
TRIP BLANK 1	CE25852	WATER
TRIP BLANK 2	CE25853	WATER

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 01, 2019

FOR: Attn: Ms. Jennifer Atkins

AECOM

250 Apollo Drive

Chelmsford, MA 01824

Sample InformationCustody InformationDateTimeMatrix:SW DISCHARGECollected by:10/02/197:05Location Code:AECOME-GULFReceived by:CP10/02/1917:17

Rush Request: Standard Analyzed by: see "By" below

P.O.#: Laboratory Data

SDG ID: GCE25850

Phoenix ID: CE25850

Project ID: GULF CHELSEA TERMINAL 60597375-0500

Client ID: OUTFALL 003

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Cadmium	< 0.0002	0.0002	mg/L	2	10/30/19	CPP	E200.8-5.4
Copper	0.0066	0.0025	mg/L	5	10/30/19	CPP	E200.8-5.4
Nickel	0.0028	0.0025	mg/L	5	10/30/19	CPP	E200.8-5.4
Lead	0.0068	0.0002	mg/L	2	10/30/19	CPP	E200.8-5.4
Zinc	0.016	0.004	mg/L	1	10/08/19	EK	E200.7
Chlorine Residual	< 0.02	0.02	mg/L	1	10/02/19 20:56	0	SM4500CI-G-00
Ammonia as Nitrogen	0.32	0.05	mg/L	1	10/04/19	KDB	E350.1
Oil and Grease by EPA 1664A	< 1.4	1.4	mg/L	1	10/08/19	MSF	EPA 1664
рН	7.78	1.00	pH Units	1	10/03/19 05:47	AP/KDB	SM4500-H B-11
Salinity	< 0.5	0.5	ppt	1	10/03/19	AP	SM2520B-10
Total Organic Carbon	5.4	1.0	mg/L	1	10/07/19	EG	SM5310B-11
Total Suspended Solids	9.7	3.2	mg/L	0.6	10/04/19	NLM/BJA	SM 2540D-11
Total Solids	270	20	mg/L	2	10/03/19	BJA	SM2540B-11
Semi-Volatile Extraction	Completed				10/03/19	P/AK	SW3520C
Total Metals Digestion	Completed				10/04/19	AG	
Total Metals Digestion MS	Completed				10/29/19	AG/BF	
Aquatic Toxicity - LC50	Completed				10/28/19	*	
Aromatic Volatiles w/Na	<u>apthalene</u>						
Benzene	ND	1.0	ug/L	1	10/03/19	MH	E624.1
Methyl t-butyl ether (MTBE)	ND	2.0	ug/L	1	10/03/19	MH	E624.1
Naphthalene	ND	1.0	ug/L	1	10/03/19	MH	E624.1
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	101		%	1	10/03/19	MH	70 - 130 %
% Bromofluorobenzene	97		%	1	10/03/19	МН	70 - 130 %
% Dibromofluoromethane	107		%	1	10/03/19	MH	70 - 130 %
% Toluene-d8	98		%	1	10/03/19	МН	70 - 130 %

Project ID: GULF CHELSEA TERMINAL 60597375-0500

Client ID: OUTFALL 003

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Ethanol	ND	400	ug/L	1	10/08/19	НМ	E624.1
Semivolatiles by SIM, P	AH						
Benzo(a)pyrene	ND	0.10	ug/L	1	10/04/19	WB	E625.1
Naphthalene	ND	0.49	ug/L	1	10/04/19	WB	E625.1
QA/QC Surrogates							
% 2-Fluorobiphenyl	69		%	1	10/04/19	WB	40 - 140 %
% Nitrobenzene-d5	68		%	1	10/04/19	WB	40 - 140 %
% Terphenyl-d14	52		%	1	10/04/19	WB	40 - 140 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

The regulatory hold time for Chlorine is immediately. This Chlorine was performed in the laboratory and may be considered outside of hold-time.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

* See Attached

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

November 01. 2019

Reviewed and Released by: Bobbi Aloisa, Vice President

Phoenix I.D.: CE25850

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 01, 2019

FOR: Attn: Ms. Jennifer Atkins

AECOM

250 Apollo Drive

Chelmsford, MA 01824

Sample InformationCustody InformationDateTimeMatrix:SW DISCHARGECollected by:10/02/197:15Location Code:AECOME-GULFReceived by:CP10/02/1917:17

Rush Request: Standard Analyzed by: see "By" below

P.O.#: Laboratory Data

SDG ID: GCE25850

Phoenix ID: CE25851

Project ID: GULF CHELSEA TERMINAL 60597375-0500

Client ID: CHELSEA CREEK

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Cadmium	< 0.0002	0.0002	mg/L	2	10/30/19	CPP	E200.8-5.4
Copper	0.0112	0.0025	mg/L	5	10/30/19	CPP	E200.8-5.4
Nickel	0.0179	0.0025	mg/L	5	10/30/19	CPP	E200.8-5.4
Lead	0.0024	0.0005	mg/L	5	10/30/19	CPP	E200.8-5.4
Zinc	0.020	0.020	mg/L	5	10/10/19	CPP	E200.7
Chlorine Residual	< 0.02	0.02	mg/L	1	10/02/19 20:57	0	SM4500CI-G-00
Ammonia as Nitrogen	0.14	0.10	mg/L	2	10/05/19	KDB	E350.1
pH	7.83	1.00	pH Units	1	10/03/19 05:49	AP/KDB	SM4500-H B-11
Salinity	26.8	0.5	ppt	1	10/03/19	AP	SM2520B-10
Total Organic Carbon	2.1	1.0	mg/L	1	10/07/19	EG	SM5310B-11
Total Suspended Solids	14	3.3	mg/L	0.7	10/04/19	NLM/BJ/	SM 2540D-11
Total Solids	34000	200	mg/L	20	10/03/19	BJA	SM2540B-11
Total Metals Digestion	Completed				10/04/19	AG	
Total Metals Digestion MS	Completed				10/29/19	AG/BF	
Aquatic Toxicity - LC50	Completed				10/28/19	*	

Project ID: GULF CHELSEA TERMINAL 60597375-0500

Client ID: CHELSEA CREEK

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

The regulatory hold time for Chlorine is immediately. This Chlorine was performed in the laboratory and may be considered outside of hold-time.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

* See Attached

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

November 01, 2019

Reviewed and Released by: Bobbi Aloisa, Vice President

Phoenix I.D.: CE25851

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 01, 2019

FOR: Attn: Ms. Jennifer Atkins

AECOM

250 Apollo Drive

Chelmsford, MA 01824

Matrix: WATER Collected by: 10/02/19

Location Code: AECOME-GULF Received by: CP 10/02/19 17:17

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 112185 Laboratory Data SDG ID: GCE25850

Phoenix ID: CE25852

Project ID: GULF CHELSEA TERMINAL 60597375-0500

Client ID: TRIP BLANK 1

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Aromatic Volatiles w/Na	<u>pthalene</u>						
Benzene	ND	1.0	ug/L	1	10/02/19	МН	E624.1
Methyl t-butyl ether (MTBE)	ND	2.0	ug/L	1	10/02/19	МН	E624.1
Naphthalene	ND	1.0	ug/L	1	10/02/19	MH	E624.1
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	101		%	1	10/02/19	МН	70 - 130 %
% Bromofluorobenzene	97		%	1	10/02/19	МН	70 - 130 %
% Dibromofluoromethane	108		%	1	10/02/19	МН	70 - 130 %
% Toluene-d8	98		%	1	10/02/19	MH	70 - 130 %
Ethanol	ND	400	ug/L	1	10/09/19	НМ	E624.1

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TRIP BLANK INCLUDED.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

November 01, 2019

Reviewed and Released by: Bobbi Aloisa, Vice President

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 01, 2019

FOR: Attn: Ms. Jennifer Atkins

AECOM

250 Apollo Drive

Chelmsford, MA 01824

Matrix: WATER Collected by: 10/02/19

Location Code: AECOME-GULF Received by: CP 10/02/19 17:17

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 112185 Laboratory Data SDG ID: GCE25850

Phoenix ID: CE25853

Project ID: GULF CHELSEA TERMINAL 60597375-0500

Client ID: TRIP BLANK 2

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Aromatic Volatiles w/Na	apthalene						
Benzene	ND	1.0	ug/L	1	10/02/19	MH	E624.1
Methyl t-butyl ether (MTBE)	ND	2.0	ug/L	1	10/02/19	MH	E624.1
Naphthalene	ND	1.0	ug/L	1	10/02/19	MH	E624.1
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	99		%	1	10/02/19	MH	70 - 130 %
% Bromofluorobenzene	100		%	1	10/02/19	MH	70 - 130 %
% Dibromofluoromethane	102		%	1	10/02/19	MH	70 - 130 %
% Toluene-d8	96		%	1	10/02/19	MH	70 - 130 %
			_				
Ethanol	ND	400	ug/L	1	10/09/19	НМ	E624.1

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate

Comments:

results(%) listed in the report are not "detected" compounds.

TRIP BLANK INCLUDED.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

November 01, 2019

Reviewed and Released by: Bobbi Aloisa, Vice President

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

November 01, 2019

QA/QC Data

November 01, 2019			QA/QC Data				SDG I.D.: GCE25850				350		
Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 500167 (mg/L), Q	C Sam	ole No: (CE25984	(CE258	50, CE	25851)							
ICP Metals - Aqueous													
Zinc	BRL	0.004	0.007	0.007	NC	105	103	1.9	106	107	0.9	75 - 125	20
QA/QC Batch 503874 (mg/L), Q	C Sam	ole No: (CE25850	5X (CE2	25850,	CE258!	51)						
ICP MS Metals - Aqueous													
Cadmium	BRL	0.0010	< 0.0002	< 0.0002	NC	110	112	1.8	111			75 - 125	20
Copper	BRL	0.0025	0.0066	0.0062	6.30	113	113	0.0	113			75 - 125	20
Lead	BRL	0.0005	0.0068	0.0073	7.10	113	107	5.5	106			75 - 125	20
Nickel	BRL	0.0025	0.0028	< 0.0025	NC	110	114	3.6	115			75 - 125	20

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

Chlorine Residual

BRL

0.02

< 0.02

< 0.02

NC

105

November 01, 2019

QA/QC Data

SDG I.D.: GCE25850 Sample Dup LCS **LCSD** LCS MS **MSD** MS Rec RPD Dup Blank RI Result Result RPD. **RPD RPD** Limits Limits % % % Parameter % QA/QC Batch 499863 (pH), QC Sample No: CE25765 (CE25850, CE25851) рΗ 96.6 85 - 115 20 Comment: Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%. QA/QC Batch 500075 (mg/L), QC Sample No: CE25816 (CE25850, CE25851) **Total Suspended Solids** 160 6.50 91.0 85 - 115 QA/QC Batch 499911 (mg/L), QC Sample No: CE25850 (CE25850, CE25851) Total Solids BRL 10 270 250 7.70 85 - 115 20 Comment: Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%. QA/QC Batch 500500 (mg/L), QC Sample No: CE26081 (CE25850) Oil and Grease by EPA 1664A BRL <1.4 NC 90.0 98.0 85 - 115 20 Comment: Additional: MS acceptance range 75-125%. QA/QC Batch 500471 (mg/L), QC Sample No: CE26804 (CE25850, CE25851) Total Organic Carbon **BRL** 1.0 3.2 3.3 NC 97.0 106 85 - 115 20 Comment: Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%. QA/QC Batch 500026 (mg/L), QC Sample No: CE25616 (CE25850) Ammonia as Nitrogen **BRL** 0.05 < 0.05 < 0.05 NC 102 104 90 - 110 20 QA/QC Batch 500072 (mg/L), QC Sample No: CE25851 (CE25851) Ammonia as Nitrogen BRL 0.05 102 100 90 - 110 QA/QC Batch 499803 (mg/L), QC Sample No: CE25850 (CE25850, CE25851)

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

November 01, 2019

QA/QC Data

				,				000.		JUL_0		
Parameter	Blank	Blk RL		LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 499950 (ug/L),	QC Samp	le No: CE25	5984 (CE25850)									
Semivolatiles by SIM, F	PAH .											
Benzo(a)pyrene	ND	0.02		64	53	18.8	33	47	35.0	40 - 140	20	m,r
Naphthalene	ND	0.50		69	57	19.0	54	58	7.1	40 - 140	20	
% 2-Fluorobiphenyl	74	%		70	70	0.0	65	69	6.0	40 - 140	20	
% Nitrobenzene-d5	69	%		71	69	2.9	61	67	9.4	40 - 140	20	
% Terphenyl-d14	76	%		76	66	14.1	50	62	21.4	40 - 140	20	r
Comment:												
Additional 8270 criteria: 10% of acceptance range for aqueous				eria as lor	ng as reco	overy is	at least	10%. (Ad	cid surro	ogates		
QA/QC Batch 499912 (ug/L),	QC Samp	le No: CE25	5460 (CE25850, CE	25852, (CE2585	3)						
Volatiles - Water												
Benzene	ND	0.70		82	83	1.2	82	84	2.4	65 - 135	20	
Methyl t-butyl ether (MTBE)	ND	1.0		92	93	1.1	90	93	3.3	70 - 130	30	
Naphthalene	ND	1.0		100	97	3.0	78	82	5.0	70 - 130	30	
% 1,2-dichlorobenzene-d4	100	%		101	98	3.0	101	100	1.0	70 - 130	30	
% Bromofluorobenzene	96	%		104	103	1.0	105	107	1.9	70 - 130	30	
% Dibromofluoromethane	108	%		100	99	1.0	107	103	3.8	70 - 130	30	
% Toluene-d8	96	%		99	97	2.0	100	99	1.0	70 - 130	30	
Comment:												
A blank MS/MSD was analyzed	d with this ba	atch.										
QA/QC Batch 500685 (ug/L),	QC Samp	le No: CE26	5112 (CE25850)									
<u>Oxygenates</u>												
Ethanol	ND	200		84	103	20.3	109	112	2.7	70 - 130	30	
Comment:												
A blank MS/MSD was analyzed	d with this ba	atch.										
QA/QC Batch 501043 (ug/L),	QC Samp	le No: CE28	3064 (CE25852, CE	25853)								
() //				,								

m = This parameter is outside laboratory MS/MSD specified recovery limits.

ND

200

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

Oxygenates - Water

Ethanol

MS Dup - Matrix Spike Duplicate

NC - No Criteria Intf - Interference Phyllis Shiller, Laboratory Director

SDG I.D.: GCE25850

7.4 70 - 130

November 01, 2019

15.7

82

r = This parameter is outside laboratory RPD specified recovery limits.

Friday, November 01, 2019

Sample Criteria Exceedances Report

Criteria: None State: MA

GCE25850 - AECOME-GULF

SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
CE25850	CU-WM-MS	Copper	MA / Client Specified Criteria / GULF CHELSEA TERMIN	0.0066	0.0025	0.0005	0.0005	mg/L
CE25850	NI-WM-MS	Nickel	MA / Client Specified Criteria / GULF CHELSEA TERMIN	0.0028	0.0025	0.0002	0.0002	mg/L
CE25850	PB-WM-MS	Lead	MA / Client Specified Criteria / GULF CHELSEA TERMIN	0.0068	0.0002	0.0002	0.0002	mg/L
CE25850	ZN-WM	Zinc	MA / Client Specified Criteria / GULF CHELSEA TERMIN	0.016	0.004	0.005	0.005	mg/L
CE25851	CU-WM-MS	Copper	MA / Client Specified Criteria / GULF CHELSEA TERMIN	0.0112	0.0025	0.0005	0.0005	mg/L
CE25851	NI-WM-MS	Nickel	MA / Client Specified Criteria / GULF CHELSEA TERMIN	0.0179	0.0025	0.0002	0.0002	mg/L
CE25851	PB-WM-MS	Lead	MA / Client Specified Criteria / GULF CHELSEA TERMIN	0.0024	0.0005	0.0002	0.0002	mg/L
CE25851	ZN-WM	Zinc	MA / Client Specified Criteria / GULF CHELSEA TERMIN	0.020	0.020	0.005	0.005	mg/L

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

November 01, 2019 SDG I.D.: GCE25850

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.

Cooler: Yes No No Temp My My No No No No No No No N		00 1	0 14 05 10 10 10 10 10 10 10 10 10 10 10 10 10		4 Φ	MA Data Format RCP Cert	S-1 S-2 S-3 MWRA eSMART Other (1)
CHAIN OF CUSTODY RECORD East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Email: info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-8726 Project: Gulf Chelsea Terminal / 60597375-0500	Report to: Jennifer Atkins Invoice to: AECOM QUOTE # AE012319RM	Teli dig dilips de la	in in its of the interest of t	> 0 > 0 > 0		Date: Time: RI Q-2-49 3-5/5 Direct Exposure Residential G G Q-2-49 7-15 G G Q-2-49 7-15 G G Q-2-49 7-15 G G	Turnaround: □ GB Mobility □ □ 1 Day* □ Residential DEC □ □ 2 Days* □ I/C DEC □ □ 3 Days* □ Other □ X Standard □ Other □ □ Other State where samples were collected:
2000 V		- Identification Date: Case Water WW=Waste Water oil SD=Solid W=Wipe OIL=Oil	Sample Date Time Matrix Sampled Sampled	61-2-01		Stal Hall	ns: © Coolers On cl
PHOENTY FOR THE STATE OF THE ST		Sampler's Signature Matrix Code: DW=Dmixing Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Soid W=Wipe OIL=O	SAMPLE # Identification	Chelsea Creek	1 1 1 1 1	Relinquished by/ Accepted by:	Comments, Special Requirements or Regulations: *** Samples 11 + + + + + + + + + + + + + + + + + +

A Division of GZA

GEOTECHNICAL ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

77 Batson Drive
Manchester, CT 06042
T: 860,643,9560
F: 860.646,7169
www.nebio.com

NEW ENGLAND BIOASSAY A DIVISION OF GZA ACUTE AQUATIC TOXICITY TEST REPORT

Permitee:	Gulf Terr	ninal - Chelsea,	NPDES#	MA0001091	
Report submitted to:	Phoenix	Environmental	Labs		
	587 East Midd	dle Tpke, Manc			
Sample ID:	(CE25850-51			
Test Month/Year:	0	ctober 2019			
NEB Proj #	05	.0045469.00		_	
Test Type / Method:	Mysidopsis bahi	α Acute Static N	on-Renewal	Saltwater	
, , , , , , , , , , , , , , , , , , , ,	Test Method 20			ouren acc.	
	Menidia beryllin			Saltwater	
	Test Method 20				
Effluent Sample D		10/2/19	Time (s):	070	05
Receiving Water S	ample Date:	10/2/19	Time:	072	15
Te	st Start Date: _	10/3/2	19		
		Results Summa	ry		
Your results were as follo	ows:				
Monitoring Only					
	Α	cute Test Resu	lts		
Species	LC50	A-NOEC	Perr	nit Limit	Pass / Fail
Mysidopsis bahia	>100%	100%		N/A	monitor only
Menidia beryllina	>100%	100%		N/A	monitor only
Data Qualifiers affecting	this test:				
	6				

Certifications & Approvals: NH ELAP (2071), NJ DEP (CT405)

This report shall not be reproduced, except in its entirety, without approval of NEB. NEB is the sole authority for authorizing edits or modifications to the data contained in this report. NEB holds no responsibility for results and/or data that are not consistent with the original. Please contact the Lab Manager, Kimberly Wills, at 860-858-3153 or kimberly.wills@gza.com if you have questions concerning these results.

An Equal Opportunity Employer M/F/V/H

TEST REPORT CERTIFICATION

Permittee name:	Gulf Terminal - Chels	ea, MA	Permit number:	MA0001091
Client sample ID:	CE25850-51		Test Start Date:	10/3/19
Whol	e Effluent Toxicity Tes	t Report C	ertification (Permit	ttee)
supervision in accord evaluate the information those persons directly knowledge and bel	y of law that this document dance with a system designe on submitted. Based on my in responsible for gathering in ief, true, accurate, and comportant or including the possession.	ed to assure th nquiry of the p formation, the plete. I am aw	nat qualified personnel poerson or persons who me be information submitted are that there are signifi	roperly gather and nanage the system, or is, to the best of my cant penalties for
Executed on:				
	(Date)	Authoriz	zed Signature	·
		Print or	Type Name and Title	*
		Print or	Type the Permittee's Na	me
			MA000109	1
		Print or	Type the NPDES Permit	Number
Whole Effl	uent Toxicity Test Rep	ort Certific	cation (Bioassay La	boratory)
	e results reported relate onl			
supervision in accord evaluate the informatio those persons directly knowledge and beli	y of law that this document dance with a system designer in submitted. Based on my in responsible for gathering in lief, true, accurate, and compormation, including the possible.	ed to assure th nquiry of the p formation, the plete. I am aw	at qualified personnel poerson or persons who me e information submitted are that there are signification	roperly gather and nanage the system, or is, to the best of my cant penalties for

NEB Issued: 10/28/19

Kimberly Wills

Laboratory Manager

New England Bioassay a division of GZA

GENERAL TEST CONDITIONS

Permittee name:	Gulf Terminal -	Chelsea, MA	Permi	t number:	MA0001091				
Client sample ID:	Client sample ID: CE25850-51 Test Start Date: 10/3/19								
	Samp	le Collection Ir	formation						
Effluent Sample Date(s	s):10/2/19@	0705	Receiving Water S	ample Date:	_10/2/19_@	0715			
Were samples used within the first 36 hours of collection? Yes ☑ No ☐ * (see note below) * sample collection note:									
		Test Condition	ons						
Permittee's Receiving	Water: Chelsea River					_			
Mysidopsis bahia									
• Dilution water: Rec	eiving water collected at	a point immed	iately upstream of	or away from	the discharge				
Control water: Labor	ratory artificial saltwater (salinity 25 ± 2	ppt)						
Aeration: Did Dissolved	d Oxygen levels fall below	40% saturatio	n? Yes 🗆 No	o 🗹					
Test Aerated at <100 b	oubbles/minute as of:	N/A							
Menidia beryllina	_								
Dilution water: Rec	eiving water collected at	a point immed	iately upstream of	or away from	the discharge				
-	ratory artificial saltwater (<u></u>				
	d Oxygen levels fall below			 o ☑					
Test Aerated at <100 b		N/A		-					
		•							
Effluent concentration	s tested: 0%, 6.25%, 12.	.5%, 25%, 50%	, 100%		×				
Was effluent salinity as			stant Ocean sea sa	lts to 25 ±	2 ppt				
Dechlorination proced	ures: Chlorine is measure	d using 4500 C	L-G DPD Colorimet	ric Method					
 Dechlorination was 	not required								
TRC results and further chemistry"	r information about aerat	ion of samples	can be found attac	ched in "samp	le receipt				
	Ref	erence Toxica	nt Data						
Mysidops	sis bahia		Me	nidia beryllind	7				
Date:	10/1/19		Da	te: 9	/9/19				
Toxicant: So	odium Dodecyl Sulfate		Toxica	nt: Sodium D	odecyl Sulfate				
Dilution Water:	Artificial Saltwater		Dilution Wat	er: Artificia	al Saltwater				
Organism Source:	NEB		Organism Source	ce: Aquatio	Indicators				
Survival 48-h LC50:	17.7 mg/L		Survival 48-h LC5						
Results within range	Yes 🗹 No 🗆		Results within	rangeYes 🔽	∣ No 🗆				

3 of 27

TEST RESULTS

Permittee name	e: Gulf Termi	Gulf Terminal - Chelsea, MA							
Client sample II): CE:	CE25850-51							
Test Acceptability Criteria									
	Mysidopsis bah	ia			Menidia beryllina				
	Lab Control Survival:	100	_%	Lab Control	Survival:	97.5	_%		
	Diluent Control Survival:	97.5	_%	Diluent Con	itrol Survival:	95	%		
-	hiosulfate Control Survival:	N/A	_%	Thiosulfate Cor	ntrol Survival:	N/A	_%		
Presence of an asterisk (*) indicates EPA criteria was not met, see explanation in the "Results Discussion" section at the bottom of the following page.									
		Te	st Res	sults					
- In the second									

	Mys	idopsis bahid	1	Menidia beryllina			
	Results	Permit Limit	Pass/Fail	Results	Permit Limit	Pass/Fail	
48 hr LC50	>100%			>100%	To de la constante de la const	THE WAY	
Upper Confidence Limit	±∞			±∞			
Lower Confidence Limit	100%			100%			
Method Used	Graphical			Graphical		0.00	
48 hr A-NOEC	100%			100%			

Presence of an asterisk (*) indicates qualified data, see explanation in the "Results Discussion" section at the bottom of the following page.

Concentration - Response Evaluation

Mysids: #12 No significant effects at any test concentration with a flat concentration-response curve. Test concentrations performed very similarly to dilution control.

Menidia: #12 No significant effects at any test concentration with a flat concentration-response curve.

Test concentrations performed very similarly to dilution control.

The concentration - response relationship was reviewed and the following determination was made:

Mysids	Menidia					
X	x	Results are reliable and reportable				
		Results are anomalous (see explanation below)				
		Results are inconclusive - retest (see explanation below)				

TEST RESULTS

Gulf Terminal - Chelsea, MA	Permit number:	MA0001091
CE25850-51	Test Start Date:	10/3/19
Results Discussion (if applicabl	el:	
	CE25850-51	

TEST METHODS

6 of 27

Mysidopsis bahia

Test type: Acute Static Non-Renewal Saltwater Test

Test Reference Manual: EPA-821-R-02-012 "Methods for Measuring the Acute Toxicity of Effluents and

Receiving Waters to Freshwater Organisms and Marine Organisms"

Test Method: Mysidopsis bahia Survival Acute Toxicity Test - EPA 2007.0

Temperature: 25 °C \pm 1°C (Temperatures should not deviate by more than 3°C during the test)

(required)

Light Quality: Ambient Laboratory Illumination (recommended)

Light Intensity: 10-20 μE/m2/s, or 50-100 ft-c (recommended)

Photoperiod: 16 hours light, 8 hours dark (recommended)

Test chamber size: 250-500 mL (recommended minimum)

Test solution volume: 200 mL (recommended minimum)

Age of Test Organisms: 1-5 days; less than or equal to 24-h range in age (required)

Number of Organisms

Per Test Chamber: 10 (required minimum)

Number of Replicate Test

Chambers Per Treatment: 4 (required minimum)

Number of Organisms Per

Test Concentration: 40 (required minimum)

Feeding Regime: Artemia nauplii are made available while holding prior to the test; feed 0.1 ml

of concentrated suspension of nauplii ≤ 24-h old, 3 times daily

Aeration: None, unless DO concentration falls below 4.0 mg/L, at which point the rate

should not exceed 100 bubbles/minute. (recommended)

7 of 27

Test Duration: 48 hours (required)

Endpoints: Survival - 48 hour LC50 and NOAEL

Test Acceptability: ≥ 90% survival of test organisms in controls

Sampling Requirements: Maximum holding time of 36 hours before first use

Sample volume required: 1 L Effluent, 2 L Recieving (recommended)

Menidia beryllina

Test type: Acute Static Non-Renewal Saltwater Test

Test Reference Manual: EPA-821-R-02-012 "Methods for Measuring the Acute Toxicity of Effluents and

Receiving Waters to Freshwater Organisms and Marine Organisms"

Test Method: Menidia beryllina Survival Acute Toxicity Test - EPA 2006.0

Temperature: 25 °C \pm 1°C (Temperatures should not deviate by more than 3°C during the test)

(required)

Light Quality: Ambient Laboratory Illumination (recommended)

Light Intensity: 10-20 μE/m2/s, or 50-100 ft-c (recommended)

Photoperiod: 16 hours light, 8 hours dark (recommended)

Test chamber size: 1 L (250 mL is the recommended minimum)

Test solution volume: 700 mL (200 mL is the recommended minimum)

Age of Test Organisms: 9-14 days; less than or equal to 24-h range in age (required)

Number of Organisms

Per Test Chamber: 10 (recommended)

Number of Replicate Test

Chambers Per Treatment: 4 (required minimum)

Number of Organisms Per

Test Concentration: 40 (required minimum)

Feeding Regime: Artemia nauplii are made available while holding prior to the test

Aeration: None, unless DO concentration falls below 4.0 mg/L, at which point the rate

should not exceed 100 bubbles/minute. (recommended)

Test Duration: 48 hours (required)

Endpoints: Survival - 48 hour LC50 and NOAEL

Test Acceptability: ≥ 90% survival of test organisms in controls (required)

Sampling Requirements: Maximum holding time of 36 hours before first use

Sample volume required: 2 L (recommended)

8 of 27 NEB Issued: 10/28/19

DATASHEETS & STATISTICAL ANALYSIS

9 of 27

NEW ENGLAND BIOASSAY ACUTE TOXICITY DATA FORM

CLIENT:	Phoenix Environ	mental Labs	M.bahia TEST ID #	19-1425a
ADDRESS:	587 East Middl	e Turnpike	M.beryllina TEST ID #	19-1425b
	Manchester,	CT 06040	CHAIN OF CUSTODY #	c39-3675/76
PERMITTEE:	Gulf Terminal - (Chelsea, MA	NEB PROJECT #	05.0045469.00
PERMIT NUMBER:	MA0001	.091	SAMPLE ID:	CE25850-51
DILUTION WATER:	Chelsea l	River		
	1411/507500 4750			
	INVERTEBRATES		VERTEBRATE	<u>:S</u>
TEST SET	INVERTEBRATES UP TECHNICIAN:	PD	<u>VERTEBRATE</u> TEST SET-UP TECHNICIAN	
TEST SET				l: PD
TEST SET	-UP TECHNICIAN:	PD	TEST SET-UP TECHNICIAN	I: PD S: Menidia beryllina
TEST SET	-UP TECHNICIAN: _ TEST SPECIES: _	PD Mysidopsis bahia	TEST SET-UP TECHNICIAN TEST SPECIES	I: PD S: Menidia beryllina # Ss19Al(10-1)
	TEST SPECIES: NEB LOT #	PD Mysidopsis bahia Mb19(9-28)	TEST SET-UP TECHNICIAN TEST SPECIES NEB LOT	I: PD S: Menidia beryllina # Ss19Al(10-1) E: 11 days

			25 9		
	DATE	TIME		DATE	
TEST START:	10/3/19	1202	TEST START:	10/3/19	
TEST END:	10/5/19	1212	TEST END:	10/5/19	

ORGANISMS PER TEST CHAMBER: 10

ORGANISMS PER CONCENTRATION: _____40

LABORATORY CONTROL WATER (ASW 25 ppt ± 2)

Lot Number	Salinity (ppt)	Alkalinity mg/L CaCO3
CRIO39-036	24	120

2	//		. 1
/ED BY:	2011	DATE:	10/28/19

10 of 27

NEB Issued: 10/28/19

10

TIME 1215 1200

ORGANISMS PER TEST CHAMBER:

ORGANISMS PER CONCENTRATION:

NEW ENGLAND BIOASSAY Mysidopsis bahia TEST DATASHEET

Facility Name:	Gulf Terminal - Chelsea, MA	NEB Test ID:	19-1425a	
NEB Project #	05.0045469.00	Test Start Date:	10/3/19	

Effluent Conc. (%)	S	umber urvivir anisms	ng	Disso	lved O: (mg/L)		Ter	mperat (°C)	ure		pH (s.u.)			Salinity (ppt)	,
hour	0	24	48	0	24	48	0	24	48	0	24	48	0	24	48
Control A	10	10	10	7.3	6.3	5.9	24.6	24.3	24.0	7.9	8.0	8.0	24	26	27
Control B	10	10	10		6.2	5.9		24.3	24.0		8.0	8.0		26	27
Control C	10	10	10		6.1	5.7		24.3	24.0		8.0	8.0		25	26
Control D	10	10	10		6.1	5.7		24.1	24.0		8.0	7.9		26	27
Diluent A	10	10	10	7.4	6.0	5.6	24.8	24.4	24.4	7.6	7.9	7.9	27	27	27
Diluent B	10	9	9		5.8	5.3		24.7	24.7		7.8	7.8		27	27
Diluent C	10	10	10		5.9	5.1		24.7	24.6		7.8	7.8		27	27
Diluent D	10	10	10		6.0	5.2		24.7	24.2		7.8	7.8		28	28
6.25 A	10	10	10	7.4	6.0	5.5	24.5	24.6	24.1	7.7	7.9	7.8	27	27	27
6.25 B	10	10	10		5.9	5.4		24.5	24.2		7.9	7.8		27	27
6.25 C	10	10	10		5.6	5.0		24.8	24.3		7.8	7.8		27	27
6.25 D	10	10	10		5.8	5.1		24.8	24.2		7.9	7.8		27	27
12.5 A	10	10	10	7.4	5.6	4.7	24.6	24.9	24.4	7.7	7.9	7.8	26	27	27
12.5 B	10	10	10		5.7	4.7		24.5	24.5		7.9	7.9		27	27
12.5 C	10	10	10		5.9	4.9		24.4	24.7		7.9	7.8		27	27
12.5 D	10	10	10		5.9	5.0		24.6	24.8		7.9	7.8		28	28
25 A	10	10	10	7.4	6.4	5.6	24.8	24.0	24.4	7.8	7.9	7.9	26	27	27
25 B	10	10	10		6.3	5.7		24.0	24.8		7.9	7.9		27	27
25 C	10	10	10		6.3	5.5		24.1	24.7		7.9	7.9		27	27
25 D	10	10	10		6.3	5.5		24.0	24.7		7.9	8.0		27	27
50 A	10	10	10	7.3	6.1	5.5	25.0	24.0	24.9	7.9	8.0	8.0	26	27	27
50 B	10	10	10		5.7	5.5		24.2	24.6		8.0	8.0		26	27
50 C	10	10	10		5.7	5.5		24.2	24.7		8.0	8.0		26	27
50 D	10	10	10		6.0	5.6		24.2	24.5		8.0	810		27	28
100 A	10	10	10	7.3	6.1	5.9	25.4	24.1	24.6	8.0	8.1	8.2	25	26	26
100 B	10	10	10		6.0	5.5		24.0	24.7		8.1	8.2		26	26
100 C	10	10	10		5.9	5.5		24.0	24.8		8.1	8.2		26	26
100 D	10	10	10		5.9	4.9		24.0	24.8		8.1	8.1		26	26
Tech Initials	PD	LS	СН	PD	LS	KW	PD	LS	KW	PD	LS	KW	PD	LS	KW

D.O. concentration fell below 4.0 mg/L	
All test solutions were aerated at <100 bubbles/minute starting on	

Report Date: Test Code/ID:

22 Oct-19 14:33 (p 1 of 2) 19-1425a / 08-6929-7080

Mysidopsis 9	6-h Acute Su	rvival Tes	t									N	ew Englar	nd Bioassa
Analysis ID:	10-0240-085	0	Endpoint:	48h Su	ırvival Ra	ate			CE	TIS Version	on:	CETISv1	.9.4	
Analyzed:	22 Oct-19 14	1:16	Analysis:	Nonpa	rametric-	-Control v	/s T	reatments	Sta	atus Level	: "	1		
Batch ID:	12-2097-788	11	Test Type:	Surviva	al (48h)				An	alyst:				
Start Date:	03 Oct-19 12	2:02	Protocol:	EPA/8	21/R-02-	012 (200	2)		Dil	Diluent: Receiving Water				
Ending Date:	05 Oct-19 12	2:12	Species:	Mysido	Mysidopsis bahia			Br	ine:					
Test Length:	48h		Taxon:	Malaco	ostraca				So	urce: I	rce: In-House Culture A			Age: 5
Sample ID:	01-7709-804	.5	Code:	A8E4D	A8E4D3D			Pr	oject:					
Sample Date:	02 Oct-19 07	7:05	Material:	Not Ap	Not Applicable			So	urce: (Gulf C	Dil Termina	al (MA000	1091)	
Receipt Date:	03 Oct-19 09	9:14	CAS (PC):						Sta	ation:				
Sample Age:	29h		Client:	Phoeni	ix Enviro	nmental	Lab	s						
Data Transfor	m	Alt H	lyp						NOEL	LOEL		TOEL	TU	PMSD
Angular (Corre	cted)	C > T							100	>100		n/a	1	4.02%
Steel Many-O	ne Rank Sun	n Test												
Control	vs Conc	-%	Test \$	Stat C	ritical	Ties	DF	P-Type	P-Value	e Decisi	on(a	:5%)		
Dilution Water	6.25		20	10	0	1	6	Asymp	0.9516	Non-Si	ignific	cant Effect		
	12,5		20	10	0	1	6	Asymp	0.9516		-	cant Effect		
	25		20	10			6	Asymp	0.9516		-	cant Effect		
	50		20	10			6	Asymp	0.9516	Non-Si	ignific	cant Effect		
	100		20	10	0	1	6	Asymp	0.9516	Non-Si	ignific	cant Effect	:	
ANOVA Table														
Source	Sum S	Sum Squares Mean Square				DF		F Stat	P-Value	e Decisi	on(α	:5%)		
Between	0.0055	332	0.001	1066		5		1	0,4457	Non-Si	gnific	cant Effect		
Error	0.0199		0.001	1066		18		_						
Total	0.0254	527				23								
Distributional	Tests													
Attribute	Test					Test St	at		P-Value		οπ(α	:1%)		
Variances		-	of Variance 1			9		4.248	2.0E-04			riances		
Variances		-	ality of Varia		st	1		4.248	0.4457	Equal '				
Distribution	Shapir	o-Wilk W N	Normality Te	st		0.4634		0.884	2.5E-08	Non-N	orma	l Distributi	on	
48h Survival f	Rate Summa	гу												
Conc-%	Code	Coun	t Mean	98	5% LCL	95% U	CL	Median	Min	Max		Std Err	CV%	%Effect
0	D	4	0.975		8954	1.0000		1.0000	0.9000	1.0000		0.0250	5.13%	0.00%
6.25		4	1.000		0000	1.0000		1.0000	1.0000	1.0000		0.0000	0.00%	-2.56%
12.5		4	1.000		0000	1.0000		1.0000	1.0000	1.0000		0.0000	0.00%	-2.56%
25		4	1.000		0000	1.0000		1.0000	1.0000	1.0000		0.0000	0.00%	-2.56%
50		4	1.000		0000	1.0000		1.0000	1.0000	1.0000		0.0000	0.00%	-2.56%
100		4	1.000	U 1.	0000	1.0000		1.0000	1.0000	1.0000		0.0000	0.00%	-2.56%
Angular (Corr	•													
Conc-%	Code	Coun			5% LCL	95% U	CL	Median	Min	Max		Std Err	CV%	%Effec
0	D	4	1.371		242	1.501		1.412	1.249	1.412		0.04074	5.94%	0.00%
6.25		4	1.412		412	1.412		1,412	1.412	1.412		0	0.00%	-2.97%
12.5		4	1.412		412	1.412		1,412	1.412	1.412		0	0.00%	-2.97%
25		4	1.412		412	1.412		1.412	1.412	1,412		0	0.00%	-2.97%
50		4	1.412		412	1.412		1.412	1.412	1.412		0	0.00%	-2.97%
100		4	1.412	1.	412	1.412		1.412	1.412	1.412		0	0.00%	-2.9 7%

000-222-335-4

CETIS™ v1.9.4.1

Analyst:_____ QA:____

12 of 27

Report Date: Test Code/ID:

Status Level:

22 Oct-19 14:33 (p 2 of 2) 19-1425a / 08-6929-7080

New England Bioassay

Mysidopsis	96-h Acute	Survival	Test
------------	------------	----------	------

Analysis ID;	10-0240-0850	Endpoint:	48h Survival Rate
Analyzed:	22 Oct-19 14:16	Analysis:	Nonparametric-Control vs Treatments

CETIS Version: CETISv1.9.4

48h Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	1.0000	0.9000	1.0000	1,0000
6.25		1.0000	1,0000	1.0000	1,0000
12.5		1.0000	1.0000	1.0000	1.0000
25		1.0000	1.0000	1.0000	1,0000
50		1.0000	1.0000	1.0000	1.0000
100		1.0000	1.0000	1.0000	1.0000

Angular (Corrected) Transformed Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	1.412	1.249	1.412	1.412
6.25		1.412	1.412	1.412	1.412
12,5		1.412	1.412	1.412	1.412
25		1.412	1.412	1.412	1.412
50		1.412	1.412	1.412	1.412
100		1.412	1,412	1.412	1,412

48h Survival Rate Binomials

Code	Rep 1	Rep 2	Rep 3	Rep 4
D	10/10	9/10	10/10	10/10
	10/10	10/10	10/10	10/10
	10/10	10/10	10/10	10/10
	10/10	10/10	10/10	10/10
	10/10	10/10	10/10	10/10
	10/10	10/10	10/10	10/10
		D 10/10 10/10 10/10 10/10 10/10	D 10/10 9/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10	D 10/10 9/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10

Graphics

Report Date: Toet Code/ID:

Source:

22 Oct-19 14:33 (p 1 of 2)

Gulf Oil Terminal (MA0001091)

Age: 5d

!		
	Test Code/ID:	19-1425a / 08-6929-7080

Analysis ID: 01-8238-1335 Endpoint: 48h Survival Rate **CETIS Version:** CETISv1.9.4

Analyzed: 22 Oct-19 14:16 Analysis: Linear Interpolation (ICPIN) Status Level:

12-2097-7881 Batch ID: Test Type: Survival (48h) Analyst: Start Date: 03 Oct-19 12:02 Protocol: EPA/821/R-02-012 (2002) Diluent: Receiving Water

Species: Ending Date: 05 Oct-19 12:12 Mysidopsis bahia Brine: Taxon: Malacostraca In-House Culture

Sample ID: 01-7709-8045 Code: A8E4D3D Project:

Phoenix Environmental Labs

Sample Date: 02 Oct-19 07:05 Not Applicable Material: Source:

Client:

Receipt Date: 03 Oct-19 09:14 CAS (PC): Station:

Linear Interpolation Options

X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
Log(X)	Linear	1748834	200	Yes	Two-Point Interpolation

Point Estimates

Test Length: 48h

Sample Age: 29h

% 95% LCL Level 95% LCL 95% UCL TU 95% UCL LC50 >100 <1

48h Survival Rate Summary			Calculated Variate(A/B)								Isotonic Variate	
Conc-%	Code	Count	Mean	Min	Max	Std Dev	CV%	%Effect	A/B	Mean	%Effect	
0	D	4	0.9750	0.9000	1.0000	0.0500	5.13%	0.0%	39/40	0.9958	0.0%	
6.25		4	1.0000	1.0000	1.0000	0.0000	0.00%	-2.56%	40/40	0.9958	0.0%	
12.5		4	1.0000	1.0000	1.0000	0.0000	0.00%	-2.56%	40/40	0.9958	0.0%	
25		4	1.0000	1,0000	1.0000	0.0000	0.00%	-2.56%	40/40	0.9958	0.0%	
50		4	1.0000	1.0000	1.0000	0.0000	0.00%	-2.56%	40/40	0.9958	0.0%	
100		4	1.0000	1.0000	1.0000	0.0000	0.00%	-2.56%	40/40	0.9958	0.0%	

48h Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	1.0000	0.9000	1.0000	1.0000
6.25		1.0000	1.0000	1.0000	1.0000
12.5		1.0000	1.0000	1.0000	1.0000
25		1.0000	1.0000	1.0000	1.0000
50		1.0000	1.0000	1.0000	1.0000
100		1.0000	1.0000	1.0000	1.0000

48h Survival Rate Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	10/10	9/10	10/10	10/10
6.25		10/10	10/10	10/10	10/10
12.5		10/10	10/10	10/10	10/10
25		10/10	10/10	10/10	10/10
50		10/10	10/10	10/10	10/10
100		10/10	10/10	10/10	10/10

000-222-335-4

CETIS™ v1.9.4.1

Analyst:_ QA:_

14 of 27

Report Date: Test Code/ID: 22 Oct-19 14:33 (p 2 of 2) 19-1425a / 08-6929-7080

Mysidopsis 96-h Acute Survival Test

New England Bioassay

Analysis ID: 01-8238-1335 **Analyzed:** 22 Oct-19 14:16

Endpoint: 48h Survival Rate
Analysis: Linear Interpolation (ICPIN)

CETIS Version: Status Level: CETISv1.9.4

Graphics

NEW ENGLAND BIOASSAY Menidia beryllina TEST DATASHEET

Facility Name:	Gulf Terminal - Chelsea, MA	NEB Test ID:	19-1425b	
NEB Project #	05.0045469.00	Test Start Date:	10/3/19	

Effluent Conc. (%)	S	umber urvivir anisms	ng	Disso	lved Ox (mg/L)		Ter	mperat (°C)	ure		pH (s.u.)			Salinity (ppt)	,
hour	0	24	48	0	24	48	0	24	48	0	24	48	0	24	48
Control A	10	10	10	7.3	6.5	6.8	24.6	24.5	24.6	7.9	8.1	8.1	24	25	25
Control B	10	10	10		6.5	6.9		24.9	24.8		8.1	8.1		25	25
Control C	10	10	9		6.5	6.5		24.9	24.8		8.1	8.1		25	25
Control D	10	10	10		6.4	6.5		25.0	24.6		8.1	8.1		25	25
Diluent A	10	10	10	7.4	6.7	6.7	24.8	24.3	24.8	7.6	7.9	8.0	27	27	27
Diluent B	10	9	9		6.5	6.5		24.4	25.0		7.9	8.0		27	27
Diluent C	10	10	10		6.5	6.3		24.9	24.8		7.9	8.0		27	27
Diluent D	10	10	9		6.5	6.4		25.0	24.7		7.9	8.0		27	27
6.25 A	10	10	8	7.4	6.7	6.6	24.5	24.2	24.8	7.7	7.9	8.0	27	27	27
6.25 B	10	10	10		6.6	6.5		24.8	24.9		7.9	8.0		27	27
6.25 C	10	10	10		6.5	6.6		24.8	24.8		7.9	8.0		27	27
6.25 D	10	10	10		6.4	6.5		24.8	24.6		7.9	8.0		27	27
12.5 A	10	10	10	7.4	6.6	6.6	24.6	24.3	24.8	7.7	8.0	8.0	26	27	27
12.5 B	10	10	9		6.5	6.6		24.7	25.1		7.9	8.1		27	27
12.5 C	10	10	10		6.6	6.4		24.8	25.0		7.9	8.1		27	27
12.5 D	10	10	10		6.5	6.5		24.8	24.9		7.9	8.1		27	27
25 A	10	10	10	7.4	6.7	6.5	24.8	24.1	25.0	7.8	8.0	8.1	26	27	27
25 B	10	10	10		6.5	6.4		24.3	25.3		8.0	8.1		27	26
25 C	10	10	9		6.6	6.4		24.4	25.2		8.0	8.0		27	26
25 D	10	10	10		6.5	6.1		24.4	24.9		8.0	8.1		27	27
50 A	10	10	9	7.3	6.7	6.5	25.0	24.2	24.9	7.9	8.1	8.2	26	26	27
50 B	10	10	10		6.6	6.5		24.5	25.0		8.1	8.2		26	26
50 C	10	10	9		6.6	6.4		24.7	24.9		8.1	8.2		26	26
50 D	10	10	10		6.4	6.4		24.6	25.0		8.1	8.3		26	26
100 A	10	10	10	7.3	6.5	6.6	25.4	24.1	24.8	8.0	8.2	8.3	25	26	26
100 B	10	10	10		6.4	6.5		24.2	24.7		8.2	8.3		25	26
100 C	10	10	10		6.4	6.5		24.6	24.7		8.2	8.3		25	26
100 D	10	10	10		6.3	6.4		24.6	24.8		8.2	8.3		25	26
Tech Initials	PD	LS	СН	PD	LS	KW	PD	LS	KW	PD	LS	KW	PD	LS	KW

D.O. concentration fell below 4.0 mg/L	
All test solutions were aerated at <100 bubbles/minute starting on	

Report Date: Test Code/ID: 22 Oct-19 14:33 (p 1 of 2) 19-1425b / 07-5592-4283

Inland Silvers	side 9	6-h Acute	Surviva	l Test								N	ew Englan	d Bioassa
Analysis ID;	07-1	250-9614		Endpoint:	48h	Survival Ra	ate			CE	IS Version	ı: CETISv	.9.4	
Analyzed:	22 O	ct-19 14:19		Analysis:	Non	parametric-	Control	vs T	reatments	Sta	us Level:	11		
Batch ID:	10-2	453-3233		Test Type:	Sun	/ival (48h)				Ana	lyst:			
Start Date:	03 O	ct-19 12:15		Protocol:		V821/R-02-	012 (200	02)			-	eceiving Wate	er	
Ending Date:	05 O	ct-19 12:00		Species:	Men	idia beryllin	ia `	,		Brin		•		
Test Length:				Taxon:		nopterygii						-House Cultu	re	Age: 11
Sample ID:	09_3	992-7634		Code:	380	62852				Pro	iect:			
Sample Date:				Material:		Applicable						ulf Oil Termin	al (MACCO)	001)
Receipt Date:				CAS (PC):	1401	Applicable					ion:		ai (IVIFICOUT	031)
Sample Age:		01-13 03.14		Client:	Pho	enix Enviro	nmental	Lah	•	Jia	ion.			
					1 110	CIIX LIIVIIO	IIIICIIIai	Lab	3					
Data Transfor Angular (Corre			Alt H	yp						NOEL 100	>100 >100	n/a	TU 1	PMSD 10.86%
										100	>100	II/a	3 <u>1</u>	10.0076
Steel Many-O	ne Ra		est											
	vs	Conc-%		Test	Stat	Critical	Ties		P-Type	P-Value		n(a:5%)		
Dilution Water	•	6.25		19		10	2	6	Asymp	0.9055	•	nificant Effec		
		12.5		20		10	3	6	Asymp	0.9516	-	nificant Effec		
		25		20		10	3	6	Asymp	0.9516	_	nificant Effec		
		50		18		10	3	6	Asymp	0.8333	_	nificant Effec		
		100		22		10	2	6	Asymp	0.9908	Non-Sig	nificant Effec	t	
ANOVA Table)													
Source		Sum Squa		Mean	<u> </u>	are	DF		F Stat	P-Value		n(a:5%)		
Between		0.0210805	5	0.004			5		0.4665	0.7961	Non-Sig	nificant Effec	t	
Error		0.162666		0.009	037		18		-					
Total		0.183746					23							
Distributional	l Test	5												
Attribute		Test					Test S	tat	Critical	P-Value	Decisio	n(a:1%)		=
Variances		Levene Ed	quality o	f Variance 7	est		3.794		4.248	0.0160	Equal V	ariances		
Variances		Mod Leve	ne Equa	lity of Varia	nce 7	Гest	0.6928	}	4.248	0.6355	Equal V	ariances		
Distribution		Shapiro-W	/ilk W N	ormality Te	st		0.851		0.884	0.0023	Non-No	rmal Distribut	ion	
48h Survival	Rate \$	Summary												
Conc-%		Code	Coun	. Mean		95% LCL	95% U	CL	Median	Min	Max	Std Err	CV%	%Effect
		Code	Count	Mean 0.950		95% LCL 0.8581	95% U	_	Median 0.9500	Min 0.9000	Max 1.0000	Std Err 0.0289	CV% 6.08%	%Effect 0.00%
0					0) (
0 6.25			4	0.950	0	0.8581	1.0000)	0.9500	0.9000	1.0000	0.0289	6.08%	0.00% 0.00% -2.63%
0 6.25 12.5 25			4	0.950 0.950 0.975 0.975	0 0 0	0.8581 0.7909 0.8954 0.8954	1.0000 1.0000 1.0000)))	0.9500 1.0000 1.0000 1.0000	0.9000 0.8000 0.9000 0.9000	1.0000 1.0000	0.0289 0.0500 0.0250 0.0250	6.08% 10.53% 5.13% 5.13%	0.00% 0.00% -2.63% -2.63%
0 6.25 12.5 25			4 4 4	0.950 0.950 0.975	0 0 0	0.8581 0.7909 0.8954	1.0000 1.0000 1.0000)))	0.9500 1.0000 1.0000	0.9000 0.8000 0.9000 0.9000 0.9000	1.0000 1.0000 1.0000	0.0289 0.0500 0.0250	6.08% 10.53% 5.13% 5.13% 6.08%	0.00% 0.00% -2.63%
0 6.25 12.5 25 50			4 4 4 4	0.950 0.950 0.975 0.975	0	0.8581 0.7909 0.8954 0.8954	1.0000 1.0000 1.0000)	0.9500 1.0000 1.0000 1.0000	0.9000 0.8000 0.9000 0.9000	1.0000 1.0000 1.0000 1.0000	0.0289 0.0500 0.0250 0.0250	6.08% 10.53% 5.13% 5.13%	0.00% 0.00% -2.63% -2.63%
0 6.25 12.5 25 50 100	rected	D	4 4 4 4 4	0.950 0.950 0.975 0.975 0.950 1.000	0	0.8581 0.7909 0.8954 0.8954 0.8581	1.0000 1.0000 1.0000 1.0000)	0.9500 1.0000 1.0000 1.0000 0.9500	0.9000 0.8000 0.9000 0.9000 0.9000	1.0000 1.0000 1.0000 1.0000 1.0000	0.0289 0.0500 0.0250 0.0250 0.0289	6.08% 10.53% 5.13% 5.13% 6.08%	0.00% 0.00% -2.63% -2.63% 0.00%
0 6.25 12.5 25 50 100 Angular (Corr	rected	D) Transfor Code	4 4 4 4 4	0.950 0.950 0.975 0.975 0.950 1.000 mmary	0 0 0 0 0 0	0.8581 0.7909 0.8954 0.8954 0.8581	1.0000 1.0000 1.0000 1.0000 1.0000)	0.9500 1.0000 1.0000 1.0000 0.9500 1.0000	0.9000 0.8000 0.9000 0.9000 0.9000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	0.0289 0.0500 0.0250 0.0250 0.0289 0.0000	6.08% 10.53% 5.13% 5.13% 6.08% 0.00%	0.00% 0.00% -2.63% -2.63% 0.00% -5.26%
0 6.25 12.5 25 50 100 Angular (Corr Conc-%	rected	D) Transfor	4 4 4 4 4 med Su	0.950 0.950 0.975 0.975 0.950 1.000 mmary : Mean	0 0 0 0 0 0	0.8581 0.7909 0.8954 0.8954 0.8581 1.0000 95% LCL	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 95% U)	0.9500 1.0000 1.0000 1.0000 0.9500 1.0000 Median 1.331	0.9000 0.8000 0.9000 0.9000 0.9000 1.0000 Min	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Max 1.412	0.0289 0.0500 0.0250 0.0250 0.0289 0.0000	6.08% 10.53% 5.13% 5.13% 6.08% 0.00% CV% 7.07%	0.00% 0.00% -2.63% -2.63% 0.00% -5.26%
0 6.25 12.5 25 50 100 Angular (Corr Conc-% 0 6.25	rected	D) Transfor Code	4 4 4 4 4 med Su	0.950 0.950 0.975 0.975 0.950 1.000 mmary : Mean 1.331 1.336	0 0 0 0 0 0	0.8581 0.7909 0.8954 0.8954 0.8581 1.0000 95% LCL 1.181 1.093	1.0000 1.0000 1.0000 1.0000 1.0000)	0.9500 1.0000 1.0000 1.0000 0.9500 1.0000	0.9000 0.8000 0.9000 0.9000 0.9000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Max 1.412 1.412	0.0289 0.0500 0.0250 0.0250 0.0289 0.0000 Std Err 0.04705 0.07622	6.08% 10.53% 5.13% 5.13% 6.08% 0.00%	0.00% 0.00% -2.63% -2.63% 0.00% -5.26%
0 6.25 12.5 25 50 100 Angular (Corr Conc-% 0 6.25 12.5	rected	D) Transfor Code	4 4 4 4 4 4 med Su	0.950 0.950 0.975 0.975 0.950 1.000 mmary : Mean	0 0 0 0 0 0	0.8581 0.7909 0.8954 0.8954 0.8581 1.0000 95% LCL	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 95% U)	0.9500 1.0000 1.0000 1.0000 0.9500 1.0000 Median 1.331	0.9000 0.8000 0.9000 0.9000 0.9000 1.0000 Min	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Max 1.412	0.0289 0.0500 0.0250 0.0250 0.0289 0.0000 Std Err 0.04705	6.08% 10.53% 5.13% 5.13% 6.08% 0.00% CV% 7.07%	0.00% 0.00% -2.63% -2.63% 0.00% -5.26% %Effect 0.00%
0 6.25 12.5 25 50 100 Angular (Corr Conc-% 0 6.25 12.5	rected	D) Transfor Code	4 4 4 4 4 4 med Su Count 4	0.950 0.950 0.975 0.975 0.950 1.000 mmary : Mean 1.331 1.336	0 0 0 0 0 0	0.8581 0.7909 0.8954 0.8954 0.8581 1.0000 95% LCL 1.181 1.093	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 95% U 1.48 1.578)	0.9500 1.0000 1.0000 1.0000 0.9500 1.0000 Median 1.331 1.412	0.9000 0.8000 0.9000 0.9000 1.0000 Min 1.249 1.107	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Max 1.412 1.412	0.0289 0.0500 0.0250 0.0250 0.0289 0.0000 Std Err 0.04705 0.07622	6.08% 10.53% 5.13% 5.13% 6.08% 0.00% CV% 7.07% 11_41%	0.00% 0.00% -2.63% -2.63% 0.00% -5.26% %Effect 0.00% -0.40%
Conc-% 0 6.25 12.5 25 50 100 Angular (Corr Conc-% 0 6.25 12.5 25 50	rected	D) Transfor Code	4 4 4 4 4 4 Count 4 4	0.950 0.950 0.975 0.975 0.950 1.000 mmary 1.331 1.336 1.371	0 0 0 0 0 0	0.8581 0.7909 0.8954 0.8954 0.8581 1.0000 95% LCL 1.181 1.093 1.242	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 95% U 1.48 1.578 1.501)	0.9500 1.0000 1.0000 1.0000 0.9500 1.0000 Median 1.331 1.412 1.412	0.9000 0.8000 0.9000 0.9000 1.0000 Min 1.249 1.107 1.249	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Max 1.412 1.412	0.0289 0.0500 0.0250 0.0250 0.0289 0.0000 Std Err 0.04705 0.07622 0.04074	6.08% 10.53% 5.13% 5.13% 6.08% 0.00% CV% 7.07% 11.41% 5.94%	0.00% -2.63% -2.63% 0.00% -5.26% %Effect 0.00% -0.40% -3.06%

000-222-335-4

CETIS™ v1.9.4.1

Analyst: QA:

17 of 27

Report Date: Test Code/ID: 22 Oct-19 14:33 (p 2 of 2) 19-1425b / 07-5592-4283

New England Bioassay

Inland Silverside 96-h Acute Su	rvival Test	
Analysis ID: 07-1250-9614	Endpoint: 48h Survival Rate	CETIS

Analysis ID:	07-1250-9614	Endpoint:	48h Survival Rate	CETIS Version:	CETISv1.9.4
Analyzed:	22 Oct-19 14:19	Analysis:	Nonparametric-Control vs Treatments	Status Level:	1

48h Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	1.0000	0.9000	1.0000	0.9000
6.25		0.8000	1.0000	1.0000	1.0000
12.5		1.0000	0.9000	1.0000	1.0000
25		1.0000	1.0000	0.9000	1.0000
50		0.9000	1.0000	0.9000	1.0000
100		1.0000	1.0000	1.0000	1.0000

Angular (Corrected) Transformed Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	1.412	1.249	1.412	1.249
6.25		1.107	1.412	1.412	1.412
12.5		1.412	1.249	1.412	1.412
25		1.412	1.412	1.249	1.412
50		1.249	1.412	1.249	1.412
100		1.412	1.412	1.412	1.412

48h Survival Rate Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	10/10	9/10	10/10	9/10
6.25		8/10	10/10	10/10	10/10
12,5		10/10	9/10	10/10	10/10
25		10/10	10/10	9/10	10/10
50		9/10	10/10	9/10	10/10
100		10/10	10/10	10/10	10/10

Graphics

Report Date:

22 Oct-19 14:33 (p 1 of 2)

Test Code/ID: 19-1425b / 07-5592-4283

								ies	t Code/ID:		19-1423070	7-0092-420
Inland	Silvers	side 96-h Acute S	Survival Te	st							New Englan	d Bioassay
Analysi	is ID:	06-0094-1727	End	lpoint:	48h Survival R	ate		CE.	ΓIS Version:	CETISV	1.9.4	
Analyze	ed:	22 Oct-19 14:19	Ana	lysis:	Linear Interpola	ation (ICPIN	1)	Sta	tus Level:	1		
Batch I	D:	10-2453-3233	Tes	t Type:	Survival (48h)			Ana	ılyst:			
Start D	ate:	03 Oct-19 12:15	Pro	tocol:	EPA/821/R-02-	-012 (2002)		Dilt	ient: Red	eiving Wa	ter	
Ending	Date:	05 Oct-19 12:00	Spe	cies:	Menidia beryllii	na		Brit	ne:			
Test Le	ength:	48h	Tax	on:	Actinopterygii			Sou	ırce: In-H	louse Culti	ure	Age: 11
Sample	e ID:	09-3992-7634	Cod	le:	38062852			Pro	ject:			
Sample	Date:	02 Oct-19 07:05	Mat	erial:	Not Applicable			Sou	ırce: Gul	f Oil Termi	nal (MA0001	091)
Receipt	t Date:	03 Oct-19 09:14	CAS	(PC):				Sta	tion:			
Sample	Age:	29h	Clie	nt:	Phoenix Enviro	nmental La	bs					
Linear	Interpo	olation Options										
X Trans	sform	Y Transform	See	d	Resamples	Exp 95%	CL Meth	nod				
Log(X)		Linear	585	354	200	Yes	Two-	Point Inter	polation			
Point E	stimat	es										
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL	•					
LC50	>100	n/a	n/a	<1	n/a	n/a						
48h Su	rvival	Rate Summary				Calcu	ulated Varia	te(A/B)			Isotor	nic Variate
Conc-%	6	Code	Count	Mean	n Min	Max	Std Dev	CV%	%Effect	A/B	Mean	%Effec
0		D	4	0.950	0.9000	1.0000	0.0577	6.08%	0.0%	38/40	0.9667	0.0%
6.25			4	0.950	0.8000	1.0000	0.1000	10.53%	0.0%	38/40	0.9667	0.0%
12.5			4	0.975		1.0000	0.0500	5.13%	-2.63%	39/40	0.9667	0.0%
25			4	0.975		1.0000	0.0500	5.13%	-2.63%	39/40	0.9667	0.0%
50			4	0.950		1,0000	0.0577	6.08%	0.0%	38/40	0.9667	0.0%
100			4	1.000	0 1.0000	1.0000	0.0000	0.00%	-5.26%	40/40	0,9667	0.0%
48h Sui	rvival l	Rate Detail										
Conc-%	6	Code	Rep 1	Rep 2	2 Rep 3	Rep 4						
0		D	1.0000	0.900	0 1.0000	0.9000						
6.25			0.8000	1.000	0 1.0000	1.0000						
12.5			1.0000	0.900	0 1.0000	1.0000						
25			1.0000	1.000	0.9000	1.0000						
50			0.9000	1.000	0.9000	1.0000						
100			1.0000	1.000	0 1.0000	1.0000						
	rvival l	Rate Binomials										
Conc-%	6	Code	Rep 1	Rep 2	Rep 3	Rep 4						
			40140									

Conc-%	Code	кер т	Ke
0	D	10/10	9/1

U	U	10/10	9/10	10/10	9/10
6.25		8/10	10/10	10/10	10/10
12.5		10/10	9/10	10/10	10/10
25		10/10	10/10	9/10	10/10
50		9/10	10/10	9/10	10/10
100		10/10	10/10	10/10	10/10

000-222-335-4

CETIS™ v1.9.4.1

Analyst:_____ QA:____

19 of 27

Report Date: Test Code/ID: 22 Oct-19 14:33 (p 2 of 2) 19-1425b / 07-5592-4283

Inland Silverside 96-h Acute Survival Test

New England Bioassay

Analysis ID: 06-0094-1727 E Analyzed: 22 Oct-19 14:19 A

Endpoint: 48h Survival Rate
Analysis: Linear Interpolation (ICPIN)

CETIS Version: Status Level: CETISv1.9,4

Graphics

NEB SALTWATER SPECES ACCLIMATION RECORD

Species:		Quantity	*Mortality upon arrival
Menidia beryllina	g. Golf Cil	- ADD COLUMNIA	
Source:	Lot #: < > (0 Dt / 15-1)		
Aquatic Indicators	05 1 5 + (10 1)	1 Uday on 10-2-17	* Mortality > 10% - Notify management
Allowable Mortality: > 5% mortality = Notify management.	tify management.		

e Mortality: > 5% mortality = Notify management.

Allowable Acclimation: Fish = No more than 50% tank volume water change over a 12 (twelve) hour period.

Mysids = Need to be +/- 2 ppt of test dilution water.

10-2-19 7,0		Date	
6.9		D.O. (mg/L)	Water
(р.Н. (SU)	Water Chemistry
23.3		Temp. (C) *	try
3		Alkal. (mg/L) ml titrant	
2 2		Sal. (ppt)	
27 27 S& SF	AM NOON PM	Feedings	
D	A = Normal, B = Erratic mov. C = Dead	Behavioral observations	Obse
707	Yes / No	Do organisms look stressed?	Observations
0 10	# of dead organisms removed from tank	Mortalities	
Acclimated to ASW		Comments / Treatment type	

21 of 27

SAMPLE RECEIPT CHEMISTRY & CHAIN OF CUSTODY DOCUMENTS

NEW ENGLAND BIOASSAY INITIAL CHEMISTRY DATA

PERMITTEE: Gulf Terminal - Chelsea, MA
NEB PROJECT # 05.0045469.00

DATE RECEIVED	10/3/19				
SAMPLE TYPE:	Effluent	Receiving Water			
COC#	C39- 3675	C39- 3676			
pH (SU)	7.4	7.6			
Temperature (°C)	7.3	6.5, 6.6, 6.9, 7.0			
Dissolved Oxygen (mg/L)	6.9	6.7			
Conductivity (µmhos)	472	42,100			
Salinity (ppt)	<1	27			
TRC - DPD (mg/L)	0.026	0.010			
TRC - Amperometric (mg/L)	N/A	N/A			
Hardness (mg/L as CaCO3)	78	4900			
Alkalinity (mg/l as CaCO3)	220	110			
Tech Initials	BA	ВА			

NOTE: NA = NOT APPLICABLE

	Salinity Adjustments									
Sample ID	Volume Salinity (ppt)		Added: g of Instant Ocean or L of DI Water	Final Salinity (ppt)	Instant Ocean Lot # (if applicable)	Date	Tech			
Effluent	10L	<1	300g	25	IO19 (9-4)	10/3/19	PD			
Receiving	N/A	N/A	N/A	N/A	N/A	N/A	N/A			

* SURCHARGE APPLIES This section MUST be Phoenix Std Report 2 2 Full Data Package Tier II Checklist Bottle Quantities. completed with EQuIS
Other
Data Package Data Delivery/Contact Options: Yes | GIS/Key Data Format Excel PDF GIS/Ke Other ပ PK S-1 GW-2 S-1 GW-3 S-2 GW-1 S-2 GW-2 S-2 GW-3 S-3 GW-2 S-3 GW-3 Project P.O. MA ☐ MWRA eSMART Coolant: State where samples were collected: Phone Email: ☐ MCP Certification SW Protection S-3 GW-1 S-1 GW-1 GW-1 GW-2 GW-3 MA Residential DEC Alorsa 587 East Middle Turnpike, P.O. Box 370, Manchester, CT 06040 GW Protection ☐ SW Protection GA Mobility **GB Mobility** ☐ RCP Cert I/C DEC Fax (860) 645-0823 Other CHAIN OF CUSTODY RECORD Client Services (860) 645-8726 티 Pobb GA Leachability Direct Exposure (Comm/Industrial) GB Leachability Direct Exposure (Residential) Objectives Objectives GA-GW GB-GW Email: info@phoenixlabs.com 3.HONE Invoice to: Report to: QUOTE# Project: Analysis Request * SURCHARGE APPLIES ७९१म Time: Turnaround Time: 3 Days* 2 Days* 1 Day* Time Sampled 10-2-14 07:05 91.1S 03-19 Matrix Code;

DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Soild W=Wipe OIL=Oil B=Bulk L=Liquid X = ____(Other) Date: Date Sampled Sw 103-19 Comments, Special Requirements or Regulations:

AECOM - Gulf Chelster Terminal. Client Sample - Information - Identification Sample Matrix 3 Environmental Laboratories, Inc. GZA-NEP Customer Sample 639-30-75 29-3676 O LEASSSO HOENIX USE ONLY Customer. 1E35851 Address: Relinquished Sampler's Signature

Cooler:

Received ON ICE

> 24 of 27 NEB Issued: 10/28/19

REFERENCE TOXICANT CHARTS

25 of 27 NEB Issued: 10/28/19

New England Bioassay

Reference Toxicant Data: Sodium Dodecyl Sulfate (SDS) Mysidopsis bahia 48-hour LC50

								CV National
Test ID	Date	LC ₅₀	Mean LC ₅₀	STD	-2STD	+2STD	CV	75th & 90th%
17-1520	10/2/2017	18.9	18.6	2.1	14.4	22.7	0.11	0.26
17-1693	11/1/2017	17.1	18.6	2.1	14.4	22.7	0.11	0.26
17-1804	12/1/2017	18.3	18.4	1.9	14.6	22.2	0.10	0.26
18-92	1/17/2018	16.9	18.2	1.8	14.6	21.7	0.10	0.26
18-188	2/2/2018	17.7	18.1	1.8	14.6	21.7	0.10	0.26
18-294	3/1/2018	17.7	18.2	1.8	14.6	21.7	0.10	0.26
18-469	4/3/2018	15.3	18.1	1.8	14.5	21.8	0.10	0.26
18-612	5/1/2018	19.0	18.2	1.8	14.6	21.8	0.10	0.26
18-815	6/11/2018	19.6	18.4	1.7	15.0	21.8	0.09	0.26
18-1086	7/25/2018	19.1	18.4	1.7	15.0	21.8	0.09	0.26
18-1156	8/8/2018	19.0	18.3	1.6	15.2	21.4	0.09	0.26
18-1470	10/1/2018	19.6	18.4	1.5	15.4	21.4	0.08	0.26
18-1627	11/1/2018	19.0	18.5	1.5	15.4	21.5	0.08	0.26
18-1828	12/17/2018	18.7	18.6	1.4	15.8	21.3	0.07	0.26
19-7	1/2/2019	18.5	18.5	1.4	15.8	21.3	0.07	0.26
19-153	2/1/2019	17.7	18.4	1.3	15.8	21.1	0.07	0.26
19-262	3/1/2019	17.1	18.4	1.3	15.7	21.1	0.07	0.26
19-402	4/1/2019	17.7	18.3	1.3	15.7	20.9	0.07	0.26
19-552	5/1/2019	18.9	18.4	1.3	15.8	20.9	0.07	0.26
19-693	6/3/2019	19.1	18.4	1.3	15.8	21.0	0.07	0.26
19-870	7/1/2019	17.7	18.4	1.3	15.8	21.0	0.07	0.26
19-1202	8/27/2019	21.1	18.5	1.4	15.7	21.3	0.08	0.26
19-1231	9/3/2019	18.3	18.5	1.4	15.7	21.3	0.07	0.26
19-1407	10/1/2019	17.7	18.3	1.2	16.0	20.6	0.06	0.26

New England Bioassay
Reference Toxicant Data: Sodium Dodecyl Sulfate (SDS) *Menidia beryllina* 48-hour LC50

Test ID	Date	LC ₅₀	Mean LC₅o	STD	-2STD	+2STD	cv	CV National 75th%	CV National 90th%
17-1685	10/31/2017	8.66	8.20	0.42	7.35	9.05	0.05	0.21	0.44
17-1694	11/1/2017	8.42	8.20	0.42	7.36	9.05	0.05	0.21	0.44
17-1805	12/1/2017	8.07	8.22	0.42	7.38	9.05	0.05	0.21	0.44
18-17	1/3/2018	7.79	8.20	0.42	7.36	9.05	0.05	0.21	0.44
18-222	2/12/2018	8.36	8.22	0.42	7.39	9.05	0.05	0.21	0.44
18-295	3/2/2018	8.36	8.24	0.42	7.41	9.07	0.05	0.21	0.44
18-552	4/20/2018	8.36	8.27	0.42	7.44	9.10	0.05	0.21	0.44
18-655	5/9/2018	7.52	8.26	0.43	7.40	9.12	0.05	0.21	0.44
18-754	6/4/2018	8.11	8.24	0.41	7.43	9.05	0.05	0.21	0.44
18-916	7/3/2018	8.66	8.25	0.40	7.45	9.06	0.05	0.21	0.44
18-1182	8/22/2018	7.18	8.19	0.45	7.30	9.09	0.05	0.21	0.44
18-1307	9/6/2018	7.55	8.18	0.47	7.25	9.11	0.06	0.21	0.44
18-1615	10/25/2018	8.66	8.18	0.47	7.25	9.11	0.06	0.21	0.44
18-1619	11/2/2018	8.36	8.17	0.46	7.25	9.09	0.06	0.21	0.44
18-1856	12/18/2018	8.66	8.18	0.46	7.26	9.10	0.06	0.21	0.44
19-13	1/3/2019	8.36	8.18	0.46	7.26	9.10	0.06	0.21	0.44
19-154	2/1/2019	8.03	8.17	0.45	7.27	9.08	0.06	0.21	0.44
19-287	3/6/2019	7.79	8.20	0.45	7.29	9.10	0.06	0.21	0.44
19-408	4/2/2019	8.66	8.20	0.46	7.28	9.13	0.06	0.21	0.44
19-618	5/15/2019	8.05	8.19	0.42	7.34	9.03	0.05	0.21	0.44
19-694	6/3/2019	8.36	8.18	0.42	7.33	9.02	0.05	0.21	0.44
19-873	7/2/2019	8.66	8.21	0.43	7.36	9.07	0.05	0.21	0.44
19-1095	8/7/2019	8.07	8.22	0.42	7.39	9.06	0.05	0.21	0.44
19-1280	9/9/2019	8.66	8.22	0.42	7.38	9.06	0.05	0.21	0.44